Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012163, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648214

RESUMO

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.

2.
Nat Commun ; 15(1): 1173, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332002

RESUMO

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.


Assuntos
Dibenzocicloeptenos , Piridinas , Infecções por Vírus Respiratório Sincicial , Animais , Feminino , Camundongos , Reposicionamento de Medicamentos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química
3.
Viruses ; 15(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005925

RESUMO

Advances in viral discovery techniques have led to the identification of numerous novel viruses in human samples. However, the low prevalence of certain viruses in humans raises doubts about their association with our species. To ascertain the authenticity of a virus as a genuine human-infecting agent, it can be useful to investigate the diversification of its lineage within hominines, the group encompassing humans and African great apes. Building upon this rationale, we examined the case of the New Jersey polyomavirus (NJPyV; Alphapolyomavirus terdecihominis), which has only been detected in a single patient thus far. In this study, we obtained and analyzed sequences from closely related viruses infecting all African great ape species. We show that NJPyV nests within the diversity of these viruses and that its lineage placement is compatible with an ancient origin in humans, despite its apparent rarity in human populations.


Assuntos
Hominidae , Infecções por Polyomavirus , Polyomavirus , Animais , Humanos , Polyomavirus/genética , New Jersey/epidemiologia , Evolução Biológica , Infecções por Polyomavirus/epidemiologia , Filogenia
4.
Front Microbiol ; 14: 1144003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275138

RESUMO

Ambiviruses are hybrid infectious elements encoding the hallmark gene of RNA viruses, the RNA-dependent RNA polymerase, and self-cleaving RNA ribozymes found in many viroids. Ambiviruses are thought to be pathogens of fungi, although the majority of reported genomes have been identified in metatranscriptomes. Here, we present a comprehensive screen for ambiviruses in more than 46,500 fungal transcriptomes from the Sequence Read Archive (SRA). Our data-driven virus discovery approach identified more than 2,500 ambiviral sequences across the kingdom Fungi with a striking expansion in members of the phylum Basidiomycota representing the most complex fungal organisms. Our study unveils a large diversity of unknown ambiviruses with as little as 27% protein sequence identity to known members and sheds new light on the evolution of this distinct class of infectious agents with RNA genomes. No evidence for the presence of ambiviruses in human microbiomes was obtained from a comprehensive screen of respective metatranscriptomes available in the SRA.

5.
Biomolecules ; 12(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36008967

RESUMO

Virus discovery has been fueled by new technologies ever since the first viruses were discovered at the end of the 19th century. Starting with mechanical devices that provided evidence for virus presence in sick hosts, virus discovery gradually transitioned into a sequence-based scientific discipline, which, nowadays, can characterize virus identity and explore viral diversity at an unprecedented resolution and depth. Sequencing technologies are now being used routinely and at ever-increasing scales, producing an avalanche of novel viral sequences found in a multitude of organisms and environments. In this perspective article, we argue that virus discovery has started to undergo another transformation prompted by the emergence of new approaches that are sequence data-centered and primarily computational, setting them apart from previous technology-driven innovations. The data-driven virus discovery approach is largely uncoupled from the collection and processing of biological samples, and exploits the availability of massive amounts of publicly and freely accessible data from sequencing archives. We discuss open challenges to be solved in order to unlock the full potential of data-driven virus discovery, and we highlight the benefits it can bring to classical (mostly molecular) virology and molecular biology in general.


Assuntos
Vírus , Biologia Molecular , Análise de Sequência , Vírus/genética
6.
Sci Rep ; 12(1): 10533, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732804

RESUMO

Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Animais , Ácidos Graxos/genética , Técnicas de Inativação de Genes , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Mamíferos
7.
J Virol ; 96(7): e0199521, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297672

RESUMO

C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.


Assuntos
Hepacivirus , Hepatite C , Lectinas Tipo C , Receptores de Superfície Celular , Antivirais/metabolismo , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Replicação Viral
8.
PLoS Biol ; 20(3): e3001561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239643

RESUMO

Type 2 diabetes (T2D) and cardiovascular disease (CVD) represent significant disease burdens for most societies and susceptibility to these diseases is strongly influenced by diet and lifestyle. Physiological changes associated with T2D or CVD, such has high blood pressure and cholesterol and glucose levels in the blood, are often apparent prior to disease incidence. Here we integrated genetics, lipidomics, and standard clinical diagnostics to assess future T2D and CVD risk for 4,067 participants from a large prospective population-based cohort, the Malmö Diet and Cancer-Cardiovascular Cohort. By training Ridge regression-based machine learning models on the measurements obtained at baseline when the individuals were healthy, we computed several risk scores for T2D and CVD incidence during up to 23 years of follow-up. We used these scores to stratify the participants into risk groups and found that a lipidomics risk score based on the quantification of 184 plasma lipid concentrations resulted in a 168% and 84% increase of the incidence rate in the highest risk group and a 77% and 53% decrease of the incidence rate in lowest risk group for T2D and CVD, respectively, compared to the average case rates of 13.8% and 22.0%. Notably, lipidomic risk correlated only marginally with polygenic risk, indicating that the lipidome and genetic variants may constitute largely independent risk factors for T2D and CVD. Risk stratification was further improved by adding standard clinical variables to the model, resulting in a case rate of 51.0% and 53.3% in the highest risk group for T2D and CVD, respectively. The participants in the highest risk group showed significantly altered lipidome compositions affecting 167 and 157 lipid species for T2D and CVD, respectively. Our results demonstrated that a subset of individuals at high risk for developing T2D or CVD can be identified years before disease incidence. The lipidomic risk, which is derived from only one single mass spectrometric measurement that is cheap and fast, is informative and could extend traditional risk assessment based on clinical assays.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Lipidômica/métodos , Herança Multifatorial/genética , Medição de Risco/estatística & dados numéricos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Genômica/métodos , Humanos , Incidência , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Medição de Risco/métodos , Fatores de Risco , Suécia/epidemiologia
9.
Curr Opin Virol ; 52: 48-56, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883443

RESUMO

The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology.


Assuntos
Vírus não Classificados , Vírus , Biologia Computacional , Vírus de DNA/genética , Genoma Viral , Filogenia , Vírus/genética , Vírus não Classificados/genética
10.
EBioMedicine ; 70: 103504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34311325

RESUMO

BACKGROUND: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. METHODS: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. FINDINGS: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control - Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. INTERPRETATION: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. FUNDING: Full list of funding sources at the end of the manuscript.


Assuntos
Aterosclerose/sangue , AVC Isquêmico/sangue , Lipidômica/métodos , Lipídeos/sangue , Lúpus Eritematoso Sistêmico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753499

RESUMO

Hepadnaviruses, with the human hepatitis B virus as prototype, are small, enveloped hepatotropic DNA viruses which replicate by reverse transcription of an RNA intermediate. Replication is initiated by a unique protein-priming mechanism whereby a hydroxy amino acid side chain of the terminal protein (TP) domain of the viral polymerase (P) is extended into a short DNA oligonucleotide, which subsequently serves as primer for first-strand synthesis. A key component in the priming of reverse transcription is the viral RNA element epsilon, which contains the replication origin and serves as a template for DNA primer synthesis. Here, we show that recently discovered non-enveloped fish viruses, termed nackednaviruses [C. Lauber et al., Cell Host Microbe 22, 387-399 (2017)], employ a fundamentally similar replication mechanism despite their huge phylogenetic distance and major differences in genome organization and viral lifestyle. In vitro cross-priming studies revealed that few strategic nucleotide substitutions in epsilon enable site-specific protein priming by heterologous P proteins, demonstrating that epsilon is functionally conserved since the two virus families diverged more than 400 Mya. In addition, other cis elements crucial for the hepadnavirus-typical replication of pregenomic RNA into relaxed circular double-stranded DNA were identified at conserved positions in the nackednavirus genomes. Hence, the replication mode of both hepadnaviruses and nackednaviruses was already established in their Paleozoic common ancestor, making it a truly ancient and evolutionary robust principle of genome replication that is more widespread than previously thought.


Assuntos
Replicação do DNA , DNA Viral/biossíntese , Evolução Molecular , Hepadnaviridae/fisiologia , Transcrição Reversa , Proteínas Virais/metabolismo , Replicação Viral , Sequência Conservada , Hepadnaviridae/classificação , Hepadnaviridae/genética , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Filogenia , RNA Viral/genética , Origem de Replicação , Proteínas Virais/genética
12.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658347

RESUMO

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

13.
Antiviral Res ; 186: 104973, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166575

RESUMO

Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (~7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.


Assuntos
Antivirais/isolamento & purificação , Evolução Molecular , Variação Genética , Vírus da Hepatite B/genética , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Quirópteros/virologia , Genoma Viral , Genótipo , Hepatite B/virologia , Vacinas contra Hepatite B/administração & dosagem , Vírus da Hepatite B/classificação , Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Primatas/virologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148654

RESUMO

Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.


Assuntos
Hepacivirus , Hepatite C , Animais , Hepacivirus/genética , Camundongos , Camundongos Transgênicos , Internalização do Vírus
15.
Ann Clin Transl Neurol ; 7(12): 2461-2466, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33159711

RESUMO

Blood biomarkers of multiple sclerosis (MS) can provide a better understanding of pathophysiology and enable disease monitoring. Here, we performed quantitative shotgun lipidomics on the plasma of a unique cohort of 73 monozygotic twins discordant for MS. We analyzed 243 lipid species, evaluated lipid features such as fatty acyl chain length and number of acyl chain double bonds, and detected phospholipids that were significantly altered in the plasma of co-twins with MS compared to their non-affected siblings. Strikingly, changes were most prominent in ether phosphatidylethanolamines and ether phosphatidylcholines, suggesting a role for altered lipid signaling in the disease.


Assuntos
Doenças em Gêmeos/sangue , Lipidômica , Esclerose Múltipla/sangue , Fosfolipídeos/sangue , Adulto , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Fosfatidiletanolaminas/sangue , Gêmeos Monozigóticos
16.
Sci Rep ; 10(1): 12761, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728112

RESUMO

Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but also patients with long survival or long-term remission have been reported. Underlying molecular signatures and mechanisms that contribute to these survival differences are only poorly understood and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing two robust patient subgroups with profound differences in survival. We further determined molecular signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- compared to long-lived patients. We identified that the majority of measured miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene regulatory networks to predict potential major regulators and found several genes and miRNAs with known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed survival differences of both subgroups and could therefore be important for prognosis. Moreover, the characteristic gene mutation and expression signatures that distinguished short- from long-lived patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring system. Our study represents the first in-depth computational approach to identify molecular factors associated with survival differences of DNMT3A-mutant AML patients and could trigger additional studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A mutations.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Adolescente , Adulto , Idoso , Ensaios Clínicos como Assunto , Análise por Conglomerados , DNA Metiltransferase 3A , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Indução de Remissão , Análise de Sobrevida , Resultado do Tratamento , Regulação para Cima , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
17.
Cancers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316399

RESUMO

The pathogenesis of ocular adnexal marginal zone lymphomas of mucosa-associated lymphatic tissue-type (OAML) is not fully understood. We performed whole genome sequencing (WGS) and/or whole exome sequencing (WES) for 13 cases of OAML and sequenced 38 genes selected from this analysis in a large cohort of 82 OAML. Besides confirmation of frequent mutations in the genes transducin beta like 1 X-linked receptor 1 (TBL1XR1) and cAMP response element binding protein (CREBBP), we newly identifed JAK3 as a frequently mutated gene in OAML (11% of cases). In our retrospective cohort, JAK3 mutant cases had a shorter progression-free survival compared with unmutated cases. Other newly identified genes recurrently mutated in 5-10% of cases included members of the collagen family (collagen type XII alpha 1/2 (COL12A1, COL1A2)) and DOCK8. Evaluation of the WGS data of six OAML did not reveal translocations or a current infection of the lymphoma cells by viruses. Evaluation of the WGS data for copy number aberrations confirmed frequent loss of TNFAIP3, and revealed recurrent gains of the NOTCH target HES4, and of members of the CEBP transcription factor family. Overall, we identified several novel genes recurrently affected by point mutations or copy number alterations, but our study also indicated that the landscape of frequently (>10% of cases) mutated protein-coding genes in OAML is now largely known.

18.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315989

RESUMO

Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


Assuntos
Hepacivirus/enzimologia , Hepacivirus/crescimento & desenvolvimento , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Iniciação da Transcrição Genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Humanos
19.
Virus Res ; 260: 38-48, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30452944

RESUMO

RNA viruses are believed to have originated from a common ancestor, but how this ancestral genome evolved into the large variety of genomic architectures and viral proteomes we see today remains largely unknown. Tackling this question is hindered by the lack of universally conserved proteins other than the RNA-dependent RNA polymerase (RdRp) as well as a limited RNA virus sampling. The latter is still heavily biased towards relatively few viral lineages from a non-representative collection of hosts, which complicates studies aiming to reveal possible trajectories during the evolution of RNA virus genomes that are favored over others. We report the discovery of 11 highly divergent lineages of viruses with genomic architectures that resemble those of the astroviruses. These genomes were initially identified through a sequence homology search in more than 6600 plant transcriptome projects from the Sequence Read Archive (SRA) using astrovirus representatives as query. Seed-based viral genome assembly of unprocessed SRA data for several dozens of the most promising hits resulted in two viral genome sequences with full-length coding regions, nine partial genomes and a much larger number of short sequence fragments. Genomic and phylogenetic characterization of the 11 discovered viruses, which we coined plastroviruses (plant-associated astro-like viruses), showed that they are related to both astro- and potyviruses and allowed us to identify divergent Serine protease, RdRp and viral capsid domains encoded in the plastrovirus genome. Interestingly, some of the plastroviruses shared different features with potyviruses including the replacement of the catalytic Ser by a Cys residue in the protease active site. These results suggest that plastroviruses may have reached different points on an evolutionary trajectory from astro-like to poty-like genomes. A model how potyviruses might have emerged from (pl)astro-like ancestors in a multi-step process is discussed.


Assuntos
Astroviridae/genética , Evolução Molecular , Ordem dos Genes , Genoma Viral , Plantas/virologia , Potyvirus/genética , Biologia Computacional , Filogenia , Homologia de Sequência , Proteínas Virais/genética
20.
BMC Cancer ; 18(1): 399, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631562

RESUMO

BACKGROUND: Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes. METHODS: Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference). RESULTS: We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups. CONCLUSIONS: We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Mutação , Taxa de Mutação , Oligodendroglioma/metabolismo , Oligodendroglioma/mortalidade , Prognóstico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...